
As toxicity testing moves away from traditional animal models towards cell-based assays and in silico 

methods, computational models integrating such data are being developed and improved. An example 

is the Bayesian network (BN) model used to predict local lymph node assay (LLNA) potency 

classification of substances in the NICEATM LLNA database. Datasets used to build such models 

may include multiple values for some combinations of assays and compounds. Using standard 

Bayesian network methods, it is difficult to build a model that makes use of all the available data. 

Instead, the data are either collapsed or selected from to produce a single value, which eliminates all 

distributional information. Using a published BN integrated testing strategy (ITS-2) for skin 

sensitization, we developed a method that incorporates the variability due to multiple LLNA values. 

Markov chain Monte Carlo is used to calculate results for a large number of BNs generated under 

distributional assumptions on the LLNA variable. This method propagates the variability through all 

model building steps. The most probable class predictions between the original ITS-2 and the MCMC 

model are similar, but the distributions of the predictions differed. These more transparent methods 

enhance risk assessment by describing the variability from the data and the model and better 

represent the reliability of the predictions. 
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Figure 1. The AOP for Skin Sensitizationa 

• We have presented a flexible, extensible, and fast method for incorporating 

variability that utilizes widely available computational tools. The MCMC ITS 

model predicts LLNA potency category results with 81% accuracy.  

• The model better incorporates major sources of variability in the data and will 

result in more accurate and robust predictions. 

 Variability in experimental LLNA potency is larger for intermediate potency 

categories (Hoffman 2014). 

 Incorporating variability in the ITS improved the overall prediction of LLNA 

potency category. 

 A moderate sensitizer that was incorrectly categorized as a weak 

sensitizer by the previous ITS model was correctly categorized by the 

MCMC model.  

• Current work includes: 

 Collection and curation of additional in vivo and in vitro data 

 Exploring computational methods to further decrease the time required for 

simulation 
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• It is unlikely that a single non-animal assay or in silico model will provide 

sufficient information on the risk or hazard posed by a chemical. Data from 

multiple inputs will need to be integrated in a way that maximizes the utility of the 

available information. 

• Computational methods play an important role in data integration. Supervised 

machine learning algorithms, such as Bayesian networks, random forests, and 

support vector machines, which find patterns in a training dataset and use these 

patterns to make predictions on a new test dataset, have been widely applied 

(Kavlock et al. 2012). 

• The training datasets used to develop these models have a single value for every 

predictor (e.g., assay) for each case (e.g., chemical). For some cases, only a 

single experimental value may be available. For others, several experimental 

values are reduced to a single value by data reduction (e.g., averaging) or 

selection.  

• Collapsing data in this way completely eliminates all information on variability and 

may result in overly optimistic or in some cases, biased, models. 

• This effect may be particularly strong when in vitro assay data are used to predict 

toxicological endpoints derived from animal models, as has been done in most 

published studies. 

• We have previously presented a Bayesian network integrated testing strategy 

(ITS) for skin sensitization that avoids animal testing by using in vitro assays and 

in silico models (Pirone et al. 2014). Here, we build upon this model and develop 

new computational tools that can better incorporate the variability in the training 

set used to build the model. 

Introduction 

• A Bayesian network is a type of probabilistic graphical model (Koller and 

Friedman 2009) that represents the conditional dependencies of a group of 

variables (e.g., assays) using a directed acyclic graph. 

• The structure of the Bayesian network was designed to be consistent with the 

adverse outcome pathway (AOP) for substances that initiate the skin 

sensitization process by covalently binding to skin proteins (Jaworska et al. 2011; 

Jaworska et al. 2013). There are four key events in the AOP (Figure 1). In order 

of occurrence they are: 1) covalent binding to skin proteins, 2) inflammatory 

responses in the keratinocyte, 3) activation of dendritic cells, and 4) T-cell 

proliferation (OECD 2012) 

 Table 2 links these events to the nodes (variables) found in the ITS structure 

(Jaworska et al. 2013) shown in Figure 2. 

• The Bayesian network used for the skin sensitization model is discrete. 

 Associated with each node is a conditional probability table (CPT) that gives 

the probability of the node being in a particular state, given the values of the 

parent nodes. 

 For example, for the CD86 node, the associated CPT gives the probability 

that CD86 has a particular value given the values of the LLNA and Cysteine 

nodes. 

• A categorical representation of a compound’s potency in the murine local lymph 

node assay (LLNA) is used as the target endpoint. The effective concentration 

that produces a stimulation index of 3 (EC3), the threshold for a positive 

response in the LLNA, is used to describe potency. The EC3 cutoffs for the four 

LLNA potency categories used in the ITS are shown in Table 1. 

• The logKow, AUC120, and Cfree variables are clustered to form the 

Bioavailability latent variable (Figure 2). Similarly, the CD86, KEC3, KEC1.5, 

DPRACys, and TIMES results are clustered to form the Cysteine latent variable 

(Figure 2). Latent variables increase the interpretability of the network, while at 

the same time reducing its computational complexity. 
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Abbreviations: LLNA = murine local lymph node assay; MCMC = Markov chain Monte Carlo.   

a The numbers show the number of chemicals predicted in each category. Bolded numbers on the diagonals show the correct predictions. 

Table 3. Confusion Matrices for the Test Set with (MCMC) and without (Bayesian Network) LLNA Variabilitya  

• In Figure 4, predictions on the test dataset obtained from the MCMC Bayesian 

network predictions are compared to those from the previously published 

Bayesian network ITS for skin sensitization (Pirone et al. 2014; Jaworska et al. 

2013). 

 For each chemical in the test dataset, the probability that the chemical 

belonged to each of the four LLNA potency categories was determined. 

 The probabilities from the MCMC Bayesian network were obtained by pooling 

the results from all of the simulations. 

 For comparison, the experimentally determined LLNA potency categories are 

also shown. Only single values are available for chemicals in the test dataset. 

 The potency category distributions are similar for both analyses. The 

distributions obtained using the MCMC are less peaked, reflecting the 

increased variability due to the multiple LLNA potency category values for 

some chemicals in the training dataset. 

• Table 3 compares the most likely LLNA potency category predictions for each 

method to the experimentally determined value. The overall predictive accuracy 

is slightly better for the MCMC method, with one chemical (CASRN 5392−40−5) 

that was incorrectly predicted as being in potency Category 2 by the previously 

published approach being correctly predicted to be in potency Category 3 by the 

MCMC method.  
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a Adapted from OECD (2012). 

• The training and test datasets from Pirone et al. (2014) were used in this 

analysis. 

 There are 124 chemicals in the training dataset: 36 nonsensitizers, 28 weak 

sensitizers, 35 moderate sensitizers, and 25 strong or extreme sensitizers. 

 There are 21 chemicals in the test dataset: 6 nonsensitizers, 5 weak 

sensitizers, 5 moderate sensitizers, and 5 strong or extreme sensitizers. 

• Using the LLNA database compiled by the National Toxicology Program 

Interagency Center for the Evaluation of Alternative Toxicological Methods 

(NICEATM), we determined that multiple EC3 values are available for 38 

chemicals in the training dataset. 

 For some chemicals, EC3 values span three potency categories. This major 

source of variability is not accounted for in current models (Pirone et al. 2014; 

Jaworska et al. 2013). 

• Implementing the method to incorporate the variability due to multiple LLNA 

values involves several computational steps as outlined in Figure 3. 

 First, LLNA variability is modeled by drawing a set of plausible LLNA values 

for each chemical in the training dataset. A categorical-Dirichlet distribution is 

used; it is parameterized using the LLNA values derived from the EC3 values 

in the NICEATM LLNA database. For these distributions, the probability mass 

is greatest where there are multiple LLNA values for a chemical and is  

non-zero at all LLNA category levels. 

 Second, the Class-attribute Interdependence Maximization (CAIM) (Kurgan 

and Cios 2004) supervised discretization algorithm is used to find cut-points 

that bin the continuous assay data in the training data into intervals. The test 

data set cannot be used to find the discretization cut points, since doing so 

would result in biased and overly optimistic prediction results. The cut-points 

found for the training data are used to discretize the test data. 

 Third, mechanistically related assays are clustered to form latent 

(unobserved) variables. 

 Fourth, the relationships among variables in the discretized training data 

(including the latent variables) are described and quantitated by the 

dependencies implied by the Bayesian network (Figure 2). Each node (assay) 

is described by a categorical likelihood with a flat Dirichlet prior. 

 Finally, Markov chain Monte Carlo (MCMC) is used to sample from the 

distribution over all variables given the available evidence (posterior 

distribution). Predictions of LLNA potency category are made for the test set 

chemicals. 

 Each step in this process is repeated 1000 times giving a set of LLNA potency 

class predictions that reflects the variability due to the multiple LLNA potency 

class measurements available for the training set chemicals. 

 All computations were carried out using R version 3.1.2 (R Core Team 2013) 

and Jags version 3.4.0 (Plummer 2003). 

Including Variability in Measured LLNA Values 

Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: BA = bioavailability; ITS-2 = integrated testing strategy 2 (Jaworska et al. 2013); 

abbreviations for other variables are provided in Table 2. 

The arrows show the conditional dependencies of the variables that impact LLNA potency. BA and 

Cysteine are latent variables for bioavailability and cysteine binding, respectively.  

 

Figure 2. Structure of the Bayesian Network 

ITS-2 Skin Sensitization Model  

MCMC Bayesian Network Bayesian Network 

Experimental Value Nonsensitizer 
Weak 

Sensitizer 

Moderate 

Sensitizer 

Strong/Extreme 

Sensitizer 
Nonsensitizer 

Weak 

Sensitizer 

Moderate 

Sensitizer 

Strong/Extreme 

Sensitizer 

Nonsensitizer 6 0 0 0 6 0 0 0 

Weak Sensitizer 1 4 0 0 1 4 0 0 

Moderate Sensitizer 0 0 5 0 0 1 4 0 

Strong/Extreme Sensitizer 0 0 3 2 0 0 3 2 

 

 

 

 

 

 

 

Abbreviations: EC3 = effective concentration that produces a stimulation index of 3, the threshold for a 

positive response in the LLNA; LLNA = murine local lymph node assay. 

Table 1. LLNA EC3 Correspondence to Skin 

Sensitization Potency Categories 

Category Number Category Description EC3 Range 

1 Nonsensitizer No EC3 

2 Weak EC3 ≥ 10%  

3 Moderate 1% ≤ EC3 < 10% 

4 Strong and extreme EC3 < 1% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: AOP = adverse outcome pathway (OECD 2012); EC150 = effective concentration that 

produces a 1.5-fold increase in the CD86 cell surface marker expression, the threshold for a positive 

response; EC3 = effective concentration that produces a stimulation index of 3, the threshold for a 

positive response in the LLNA; ITS-2: integrated testing strategy 2 (Jaworska et al. 2013); LLNA = 

murine local lymph node assay. 

Table 2. Variables for the Bayesian Network 

ITS-2 Skin Sensitization Model 

Measurement Description Model Variable  AOP Key Event 

Physicochemical 

Property 

Octanol–water partition 

coefficient 
logKow: Log Kow  

Substance must 

penetrate the stratum 

corneum (step 1 of the 

AOP; not a key event) 

Epidermal 

Bioavailability  

Concentration of chemical 

reaching the mid-epidermal layer 

of skin calculated using a 

transdermal transport model 

(Kasting et al. 2008). 

1) Cfree: free test substance 

concentration in mid-epidermis 

multiplied by thickness of viable 

epidermis (0.01 cm) expressed as 

percent of applied dose  

2) AUC120: area under the flux 

curve at 120 h as percent of 

applied dose  

Substance must 

penetrate the stratum 

corneum (step 1 of the 

AOP; not a key event) 

Direct Peptide 

Reactivity Assay 

(DPRA) 

In chemico method that 

measures peptide remaining 

after the test substance binds to 

two model heptapeptides 

1) DPRACys: percent cysteine 

peptide remaining  

2) DPRALys: percent lysine 

peptide remaining  

1) Binding to skin 

proteins 

KeratinoSens 

Assay 

In vitro test that detects 

electrophiles using the Nrf2 

electrophile-sensing pathway in 

the HaCaT (immortalized 

keratinocyte) cell line 

1) KEC1.5: average concentration 

that produces 1.5-fold enhanced 

activity (µM)  

2) KEC3: average concentration 

yielding 3-fold enhanced activity 

(µM) 

3) IC50: concentration producing 

50% cytotoxicity (µM) 

2) Keratinocyte 

inflammatory 

responses 

U937 Activation 

Test  

In vitro test that uses the human 

myeloid cell line U937 

CD86: EC150 (µM) for CD86 cell 

surface marker expression 

3) Dendritic cell 

activation 

LLNA 

In vivo test for skin sensitization. 

EC3 is used to categorize 

potency as noted in Table 1. 

LLNA: categorical representation 

of LLNA potency 

1 = nonsensitizer 

2 = weak sensitizer 

3 = moderate sensitizer 

4 = strong and extreme sensitizers 

4) T-cell proliferation 

TIMES-M  

  

In silico categorical prediction of 

skin sensitization potency using 

TIMES (Tissue Metabolism 

Simulator) software (V.2.25.7), 

an expert system that makes 

predictions based on knowledge 

about the parent compound and 

potential skin metabolites 

(Dimitrov et al. 2005). 

TIMES: three categories: 

nonsensitizer, weak sensitizer, and 

moderate/strong/extreme sensitizer  

Not a key event of the 

AOP. Model links 

parent and metabolite 

structures to skin 

sensitization outcomes 

in animals and 

humans 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: CAS = Chemical Abstracts Service Registry Number; LLNA = murine local lymph node 

assay; MCMC = Markov chain Monte Carlo. 

a  MCMC analysis includes variability in the LLNA potency measurements, while the Bayesian 

network analysis does not. Test Data shows the experimental results. LLNA categories are 

described in Table 1.  

 

Figure 4. Prediction of LLNA Potency Category 

for Test Set Substancesa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviations: BA = bioavailability; LLNA = murine local lymph node assay; MCMC = Markov chain 

Monte Carlo. 

Figure 3. Primary Computational Steps of the 

MCMC Bayesian Network Modeling Process 
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